
GPUSPH Installation Guide

version 4.0 — October 2016

Contents
1 Introduction 3

2 Installation of GPUSPH 4
2.1 Installing CUDA . 4
2.2 Installing GPUSPH . 5
2.3 Installing the CHRONO library . 6

3 Choosing the GPUSPH Problem and other compilation options 8

4 Example Problems 9
4.1 DamBreak3D . 9
4.2 DamBreakGate . 10
4.3 OpenChannel . 10
4.4 WaveTank . 11
4.5 SolitaryWave . 12
4.6 Seiche . 12
4.7 TestTopo . 13

5 GPUSPH Command Line Options 13

6 Running multi-node simulations 14

7 Installing pre/post processing tools 18
7.1 Installing SALOME . 18
7.2 Installing CRIXUS . 18
7.3 Installing PARAVIEW . 19

1

A GNU General Public License 21

2

1 Introduction

GPUSPH is an implementation of Smoothed Particle Hydrodynamics (SPH) on
nvidia CUDA-enabled graphics cards. The first version of GPUSPH was devel-
oped by Alexis Hérault, guided by SPHysics, and presented at the Third SPHERIC
Workshop in Lausanne, Switzerland in 2008. The graphics processing unit (GPU) im-
plementation came from GPU-LAVA, a lava flow program, developed by Hérault and
Bilotta at INGV in Catania, Italy. The present version of GPUSPH is open source,
licensed under the GNU General Public License (www.gnu.org/licenses/gpl.txt).

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless numerical method
that was developed in astrophysics by Lucy (1977) and Gingold and Monaghan
(1977). Its first application to free surface flows (e.g. dam breaks and waves) was
by Monaghan et al. (1994). Since in SPH the interactions between particles involve
many neighbors (several hundreds in three dimensions), it suffers from high compu-
tational costs. This motivated the development of massively parallel SPH codes, in
particular codes running on graphics cards due to their performance and relatively
low cost.

The development of sophisticated graphics cards is driven by the demands of ad-
vanced computer gaming, in particular to handle three-dimensional graphics for the
computer display. Each of these graphics cards has numerous streaming processors
to do the mathematics of image rotation, resizing etc. With the advent of the CUDA
programing language from nvidia in 2007, simple C++ language can be used to access
the mathematical power of these massively parallel cards. For computer simulations
that are not data-intensive, GPU programming provides supercomputer capabilities
at commodity prices.

Some timing information can be found in Hérault et al. (2010), showing that using
the GPU is far faster (orders of magnitude) than using a CPU to compute SPH
models. Speedups of 100 can be achieved for parts of the code when compared to
serial versions of the code.

The first version of GPUSPH was running on nvidia’s Compute Capability (CC) 1.x
cards, GeForce 8xxx cards. From this first version we tested GPUSPH on all nvidia
architectures (from Fermi CC 2.x to the latest Pascal CC 6.x). nvidia dropped
support for CC 1.x and will soon do it for CC 2.x. So at the moment GPUSPH will
run on any card with CC 2.x or higher (from Fermi up) but we expect to drop soon

3

www.gnu.org/licenses/gpl.txt

the support for CC 2.x. When done GPUSPH will run on any card with CC 3.x or
higher (from Kelpler up).

This guide is divided into several sections. First, the installation and set-up of the
GPUSPH code is explained and some example problems to illustrate its use are
provided. The second chapter goes through all the steps necessary to build a new
simulation and post-process the results. The third chapter deals with an overview
of SPH, with which the reader should have some familiarity. Finally we discuss the
nature of the GPUSPH program in some detail.

2 Installation of GPUSPH
The first step to run GPUSPH is to install the nvidia company’s CUDA compilers
and libraries (directions given below). CUDA is an extension of the C++ language to
allow C++ to talk to the graphics card.

The second step is to install the open source software, CHRONO, which simulates
rigid body dynamics. This library is used for any rigid objects that move, such as
floating objects or objects moved by fluid flow.

The third step is to obtain, compile and run GPUSPH.

Remark: to run multi-node simulations, you also need to install OpenMP (>=
1.8.4).

2.1 Installing CUDA
Ensure that your computer has an nvidia graphics card that is CUDA enabled. The
nvidia website has a list of all the CUDA-enabled graphics cards: www.nvidia.com/
object/cuda_gpus.html. You can check whether CUDA is already installed on your
machine by launching the command:
nvidia -smi

from the terminal. If CUDA is installed it will give you information on the current
state of the NVIDIA graphics card(s) on the machine.

Note: GPUSPH runs on cards with Compute Capabillity at least 2.0

4

www.nvidia.com/object/cuda_gpus.html
www.nvidia.com/object/cuda_gpus.html

Remark: regarding the choice of the GPU, the more CUDA cores and the more
memory on the card, the better. Anyway a mid range mobile GPU’s like GT750m/GT840
with 1 or 2GB of memory is sufficient to run significant simulations. A laptop with
such a GPU will be a perfect mobile developing and testing platform.

The GPU programming language CUDA can be obtained from the nvidia website,
CUDA Zone. The CUDA Toolkit and CUDA Software Development Kit (SDK) need
to be installed for your operating system along with the video driver. These packages
include the CUDA compiler nvcc, which is needed to develop executable code, and
the graphics card driver that allows your program to access the GPU card.

Download the relevant driver for your machine from:
http://www.nvidia.com/Download/index.aspx?lang=en-us
and the CUDA toolkit from:
https://developer.nvidia.com/cuda-downloads
Follow the instructions provided by nvidia for the installation.

To ensure that all is installed correctly and working, you should compile and run
the SDK examples, which include many programs that illustrate the capabilities
of CUDA and the GPU; for example, nvidia’s sorting program radixSort is used
by GPUSPH to organize the neighbor list. Some interesting SDK programs are
fluidsGL and particles. To compile the SDK programs, after the SDK is in-
stalled, go to /Developer/GPUComputing/C and (on a unix/linux or mac machine),
type make on a terminal window command line. This should create a directory of
executable examples located within the C directory called bin/darwin/release for the
mac and bin/linux/release for a linux machine. In this directory, type ./fluidsGL
to run the fluidsGL example. You should see a green window open on your desktop.
Use the mouse to stir up the fluid. The example program Particles is worth playing
with as well, as it provided a basis for developing GPUSPH.

2.2 Installing GPUSPH
The GPUSPH source code is hosted on GitHub. The project’s GitHub page is
http://github.com/GPUSPH/gpusph.
To obtain the GPUSPH code, you can either use the git revision control system, or
download a .zipped archive of a specific version. This manual refers to version 4.0
of GPUSPH.

5

http://www.nvidia.com/Download/index.aspx?lang=en-us
https://developer.nvidia.com/cuda-downloads
/Developer/GPU Computing/C
http://github.com
http://github.com/GPUSPH/gpusph

If you have git installed, you can use

git clone https :// github.com/GPUSPH/gpusph.git
cd gpusph
git checkout v4.0

to get version 4.0 specifically. Otherwise, download the .zipped archive from http:
//github.com/GPUSPH/gpusph/archive/v4.0.zip, and then

unzip v4.0.zip
cd gpusph -4.0

(you may remove v4.0.zip afterwards).
Within the top directory, you can find the Makefile, a src directory (holding the
main GPUSPH source), a scripts directory (holding various auxiliary scripts), a
copy of the license, settings to produce internal documentation with Doxygen, and
a sample Digital Elevation Model (DEM) data file.
The most interesting source files in src are the Problems. A few sample problems
are shipped with GPUSPH, showing how to employ specific features. You can get a
list of the available problems by running

make list -problems

To build and test GPUSPH, you can run

make test

which should automatically detect your configuration, such as the compute capability
of your GPU as well as the availability of optional libraries such as MPI (for mulit-
node support) or HDF5 (to read HDF5SPH data files).
When the building completes, you will have some new directoryes (build and dist)
and a GPUSPH soft link to the compiled binary. make test will also automatically
run ./GPUSPH for you.
After building, simply runnning ./GPUSPH will run the program again.

2.3 Installing the CHRONO library
The CHRONO website provides information for how to install CHRONO:
http://api.chrono.projectchrono.org/tutorial_install_chrono.html

Remark: There is no need for the Irrlicht library with GPUSPH.

6

http://github.com/GPUSPH/gpusph/archive/v4.0.zip
http://github.com/GPUSPH/gpusph/archive/v4.0.zip
http://api.chrono.projectchrono.org/tutorial_install_chrono.html

In this section we summarize the steps for the CHRONO library installation. To in-
stall CHRONO, besides the GPUSPH requirements you need to have cmake installed
and a cmake interface like ccmake on Linux.
First, create a directory where to install CHRONO:
mkdir install_chrono

In that directory, clone the CHRONO repository from Github in a source directory:
cd install_chrono
git clone https :// github.com/projectchrono/chrono.git source

This command will download the CHRONO repository in a folder named source.
Create a folder where to build CHRONO:
mkdir build

From the build repository, run cmake:
cmake ../ source

Configure the compilation options with ccmake:
ccmake .

set the following options to off:
ENABLE_MODULE_CASCADE OFF
ENABLE_MODULE_COSIMULATION OFF
ENABLE_MODULE_FEA OFF
ENABLE_MODULE_FSI OFF
ENABLE_MODULE_IRRLICHT OFF
ENABLE_MODULE_MATLAB OFF
ENABLE_MODULE_MKL OFF
ENABLE_MODULE_OPENGL OFF
ENABLE_MODULE_PARALLEL OFF
ENABLE_MODULE_POSTPROCESS OFF
ENABLE_MODULE_PYTHON OFF
ENABLE_MODULE_VEHICLE OFF
ENABLE_OPENMP OFF

Once this is done, you can compile the CHRONO project (still from the build folder):
make

and install the library (also from the build folder):
make install

7

3 Choosing the GPUSPH Problem and other com-
pilation options

You can test a different problem by using:
make problem=OtherProblem test

where OtherProblem is the name of a different problem. You can get a list of available
problems with make list-problems.
There are a number of other options available. A complete list of the options and
their description can be obtained by running make help-options. All options (with
the exception of plain and echo) are persistent across compilations, so they can be
set once with make option=value, and subsequent executions of make will remember
the value set.
The make options are listed below:

• target_arch - if set to 32, force compilation for 32 bit architecture

• problem - Name of the problem.

• dbg - 0 no debugging, 1 enable debugging

• compute - 11, 12, 13, 20, 21, 30, 35, etc: compute capability to compile for
(default: autodetect)

• fastmath - Enable or disable fastmath. Default: 0 (disabled)

• mpi - 0 do not use MPI (no multi-node support), 1 use MPI (enable multi-node
support). Default: autodetect

• hdf5 - 0 do not use HDF5, 1 use HDF5, 2 use HDF5 and HDF5 requires MPI.
Default: autodetect

• verbose - 0 quiet compiler, 1 ptx assembler, 2 all warnings

• plain - 0 fancy line-recycling stage announce, 1 plain multi-line stage announce

• echo - 0 silent, 1 show commands

• chrono - 0 do not use the CHRONO library, 1 use the CHRONO library

To view your current make options type make show instead of make.

8

4 Example Problems

Simulations in GPUSPH are defined in terms of Problems. Some example problems
are provided with GPUSPH itself, to illustrate the basics of problem design, and how
to use the fundamental building blocks provided by GPUSPH. Such building blocks
include a variety of geometrical shapes to describe the (fixed) solid boundaries of the
domain, as well as a number of objects that move following prescribed laws, such as
gates, pistons and paddles.
These objects are designed to offer great flexibility in their use, far beyond what
is shown in the sample problems. This flexibility should allow you to create very
complex simulations by combining the objects appropriately.
The number of particles used in the test problems is deliberately taken as a small
number, simply to allow for fast execution times even on older hardware. One of the
first tests to try is to increase the resolution by reducing the size of the particles. For
example, by reducing the particle size from the default of 0.025m to the smalle 0.02m,
DamBreak3D would run with 21, 252 particles instead of the default 10, 664.
This can be done in two ways. A permanent change comes about by editing the
problem file (e.g. DamBreak3D.cc) and changing the value passed as argument of
set_deltap() (e.g., replace set_deltap(0.025f); with set_deltap(0.02f);. The
second way is to specify the particle size at runtime using the appropriate command
line option (described below): e.g. ./GPUSPH --deltap 0.02.

4.1 DamBreak3D

DamBreak3D is a case originally used by Gomez-Gesteira and Dalrymple (2004) for
testing a prototype version of SPHysics. It is based on some experiments done
by Árnason (2005) at the University of Washington. We assume an instantaneous
breaking dam and the resulting flow impinging onto a rectangular object. The whole
problem is contained within a bounding box, which extends 1.6m in length (x axis),
0.67m in width (y axis), and 0.4m in height. This is the experimental box. The
fluid behind the dam is a rectangular box of water at one end of the tank at time
equal to zero. The dam is assumed to break instantaneously so that the column of
water, confined on three sides, collapses into the tank. In the tank there is a vertical
rectangular object – the collapsing water column impacts on the tank and then flows
up the front face of the object and around the sides. Finally the water hits the back
wall of the tank. A screenshot of the simulation at time 0.6s is provided in the Figure
1.

9

Figure 1: Screenshot of the DamBreak3D simulation at time 0.6s.

4.2 DamBreakGate
In most laboratory experiments of dam breaks, the dam takes a certain amount of
time to move out of the way. The example problem DamBreakGate illustrates the use
of moving boundary particles of the type GATEPART. The problem is set up the
same way as the DamBreak3D case, but there is a moving gate that is raised vertically
with a linearly varying velocity. In this case, the gate will move with a velocity that
is zero when the problem starts and that linearly increases with time until the gate
is outside the domain. The effect on the dam break is that the escaping water is
affected by the gage motion. (See Crespo et al. (2008)’s SPH modeling of Jánosi
et al. (2004)’s experiment, where a moving gate was important.)
The moving gate is created by defining its geometry with particles denoted as
GATEPART particles and the mb_callback function, which is used for the moving
boundaries.
A screenshot of the simulation at time 0.8s is provided in the Figure 2.

4.3 OpenChannel
This problem represents an instantaneous start up of a highly viscous and dense fluid
flow in an open channel on a 9 deg slope. The channel is rectangular in cross-section
(1m wide and 0.7m deep) and the computed length of the infinitely long channel is
2m. The side walls are fixed (Leonard-Jones boundary force) while the computational
ends of the domain are periodic, so that a particle leaving the downstream end of
the model domain enters the upstream end at the same place, 2m upstream.

10

Figure 2: Screenshot of the DamBreakGate simulation at time 0.8s.

The periodic boundary here is used in the x direction, although boundaries in other
problems can be periodic in the other directions as well. The key parameter in
the problem statement is m_simparams.periodicbound, which can be set to any
combination of PERIODIC_X, PERIODIC_Y, PERIODIC_Z to indicate peridocity along
each of the axes. Figure 3 shows the shape of the velocity field in the channel after
time convergence.

4.4 WaveTank

WaveTank uses a moving boundary to create a paddle wavemaker at one end of
a wave tank with a sloping bottom (bottom slope is 4.2364 deg). The wavemaker
motion is controlled by the mb_callback function. In this case, the length of the
paddle is 1.0m and the paddle pivots about an origin m_origin; here, the pivot is
located 0.1344m below the bottom and 0.13m from the front wall of the tank. To
specify the paddle motion, the angular frequency of the motion (2π/T , where T = 1s
is the wave period), and the wave paddle stroke at the water surface (S = 0.1m) are
given in the variables mb_omega and mb_amplitude. To change the stroke and the
frequency of the wave paddle, you must change these variables in the problem file,
WaveTank.cc. Figure 4 shows a screenshot of the simulation at time 9s.

11

Figure 3: Screenshot of the OpenChannel simulation after time convergence.

4.5 SolitaryWave
SolitaryWave is similar in set up to the WaveTank example, except that a piston
moving boundary is used. The motion of a vertical plate is determined by the
method of Goring (1979), available in PDF format from:
http://caltechkhr.library.caltech.edu/50/
The full excursion (stroke) of the paddle is the variable S.

4.6 Seiche
The Seiche problem is to examine the influence of shaking on a rectangular container
of size: ` = 0.707m, w = `/2, and depth, H = 0.5m. The purpose of the example is
to illustrate the ability to vary gravity in a problem. As the problem starts, there is
water in the container. After 0.3s, gravity is modified by adding a component in the
x direction, such that the total gravity vector is
m_physparams.gravity = make_float3(3.*sin(9.8*(t-m_gtstart)), 0.0, -9.81f);
which means that the container is shaken with a sinusoidal motion with angu-
lar frequency of 9.8s−1 (period = 0.64s), with a magnitude of 3m/s2 until time
m_gtend=3.0 is reached, when the gravity vector once again returns to the vertical
acceleration of gravity. After this time, the seiching motion starts to decrease in

12

Figure 4: Screenshot of the WaveTank simulation at time 9s.

amplitude.
The variation of gravity with time (and any stop (m_gtend) and start times) is
prescribed in a user-supplied (in the problem) g_callback function.

4.7 TestTopo
This is an example showing how to use GPUSPH’s support for Digital Elevation
Models (DEMs). It loads the topography of the bottom of the domain from a file
called half_wave0.1m.txt, shipped with GPUSPH. A different DEM can be used,
by either changing the name in the source TestTopo.cc file, or by providing the new
name as argument to the --dem command-line option to GPUSPH.

5 GPUSPH Command Line Options
When running from the command line, there are several options available to you to
alter some aspects of the GPUSPH run.

--device integer Choose which GPU(s) to use for the run. On the command line:
./GPUSPH --device N, where N is the (integer) number of the device you wish
to use. To find the number associated with each of your CUDA-enabled devices
(graphics cards), you can use the CUDA SDK program DeviceQueryDrv. If
you only have one CUDA-enabled GPU, the only possible choice for N is 0,
which is the default. If you want to run the simulation on several GPUs, the
command is: ./GPUSPH --device i,j,k

--deltap float Change the resolution (inter-particle spacing) at which the problem
should be run.

13

--tend float The model time in seconds when you wish the model to stop.

--dem string For the Problem TestTopo: the name of the DEM file to use.

--resume fname Resume from the given file (HotStart file saved by HotWriter).

--checkpoint-every float HotStart checkpoints will be created every VAL seconds
of simulated time (float VAL, 0 disables).

--checkpoints integer Number of HotStart checkpoints to keep.

--maxiter integer Break after this many iterations.

--dir string Use given directory for dumps instead of date-based one.

--nosave Disable all file dumps but the last.

--gpudirect Enable GPUDirect for RDMA (requires a CUDA-aware MPI library).

--striping Enable computation/transfer overlap in multi-GPU (usually convenient
for 3+ devices).

--asyncmpi Enable asynchronous network transfers (requires GPUDirect and 1 pro-
cess per device).

--num-hosts integer Uses multiple processes per node by specifying the number
of nodes.

--byslot-scheduling MPI scheduler is filling hosts first, as opposite to round robin
scheduling.

--debug flags Enable specified debug flags.

--help Show the help and exit.

6 Running multi-node simulations
GPUSPH can distribute the computation of a simulation on multiple GPU devices
attached to different nodes of a cluster in different ways.
Say we want to launch a simulation on N nodes, each with D devices (with CUDA
device numbers ranging from 0 toD−1); the total number of devices in the simulation
will be N ×D. We can run either:

14

• one process per node, D GPUs per process

• 2 processes per node, D/2 GPUs per process

• 4 processes per node, D/4 GPUs per process

• etc.

Additionally, some MPI implementations have built-in support for CUDA, which
allows for faster communication between devices on different nodes. Experimental
support for this feature can be enabled in GPUSPH with the --gpudirect command-
line option.
The best decision on how to distribute the computation across nodes and devices
depends on the queue policy of the cluster, on the network topology, on simple a
posteriori performance tests, on the capabilities of the MPI implementation, etc.
If we wanted to run the simulation on all the devices of one node, we would run in
an interactive shell:
./ GPUSPH --device 0,1,...D-1

Running the same simulation on multiple nodes only requires to run the same com-
mand within the reference MPI launcher (usually a script called mpirun); GPUSPH
will retrieve the necessary information about the launch environment directly from
the MPI runtime and will organize the node-to-node communication accordingly.
mpirun -np N ./ GPUSPH --device 0,1,...D-1

This command leaves to MPI the choice of which nodes to use in the network, if
more than N are available. It is always safe to provide MPI a list of hostnames
corresponding to the nodes chosen to run the simulation. If the file containing the
list of hostnames is called “myhostsfile”, a typical syntax will be:
mpirun -np N -hostfile ./ myhostsfile \
./ GPUSPH --device 0,1,...D-1

Please note the syntax may vary from one MPI library to another. For example,
MVAPICH uses -hostfile while OpenMPI --hostfile.
Let us now see the command line options needed to run the same simulation with
more processes (and thus on more nodes) and a smaller number of devices per process.
In this case we need to inform both the MPI runtime and GPUSPH. For the former,
we simply decrease the number of processes to start (with the -np option); for the
latter, we need to shorten appropriately the list of devices passed with the --device
option. If our aim is to run N ∗ 2 processes each using D/2 devices, we then run:

15

mpirun -np N*2 -hostfile ./ myhostsfile \
./ GPUSPH --device 0,1,...D/2-1

Here we need to take care of a few important details. If the list of available hosts
contains at least N ∗ 2 hostnames, the MPI runtime will start every process on a
different physical node. But what happens if the list is shorter (e.g. N hosts only),
or if we want anyway to use a smaller number of nodes (for example because part of
the cluster is already used by other processes)? The MPI runtime will start multiple
processes per node and the GPU device numbers will be likely to conflict (i.e. two
different processes might try to use the same GPU device for different parts of the
simulation domain, causing a performance slowdown or a failure if the CUDA devices
are set in “exclusive mode”). In this case, we must inform GPUSPH that the number
of physical hosts (i.e. nodes) is smaller than the number of processes, so that it will
shift the GPU device numbers of the appropriate processes and no GPU device will
be accessed by two processes. The corresponding option is --num-hosts:

mpirun -np N*2 -hostfile ./ myhostsfile \
--num -hosts N ./ GPUSPH --device 0,1,...D/2-1

But there is another important detail. There are different ways the MPI runtime can
distribute the processes across the nodes. Two very common policies are “by slot”
(fill-first) and “by node” (round robin). The scheduling policy affects the association
between the process ranks and the CUDA device numbers, so GPUSPH must be
informed about it to use the appropriate offsets. GPUSPH assumes a round robin
schedule is being used; if this is not true, the --byslot-scheduling option must be
passed:

mpirun -np N*2 -hostfile ./ myhostsfile \
--num -hosts N --byslot -scheduling \
./ GPUSPH --device 0,1,...D/2-1

There is no optimal policy in general as its performance depends on the node load
and the node-to-node connection speed. It is worth trying both to check whether one
is more performant than the other. The default policy is usually “by slot” (fill-first,
usually preferred by non GPU-based softwares) but it is always safer to explicitly set
it for every run. In OpenMPI the corresponding options are --byslot and --bynode.
One final possibility is to run one process per device. This is the most consuming
option from the point of view of the host memory, since every process will allocate on
host the whole simulation scenario, but it might be useful if the GPUDirect feature
is being used but the MPI runtime does not support multiple devices per process,
or if the amount of data to be saved on file is large or the saving frequency is very

16

high, so that saving would benefit from a parallel dump (every process saves its part
of the simulation independently from the other processes).
Finally, let’s see some practical examples. Suppose our cluster has 12 nodes, each
equipped with 4 GPU devices. We need to run a simulation on 12 devices. To run
3 processes on 3 hosts, each using 4 devices, we will run:

mpirun -np 3 -hostfile ./ myhostsfile ./ GPUSPH --device 0,1,2,3

To run 6 processes on 6 hosts, each using 2 devices, we will run:

mpirun -np 6 -hostfile ./ myhostsfile ./ GPUSPH --device 0,1

Note that another simulation can be run simultaneously on the remaining 2 devices
of the same nodes, with:

mpirun -np 6 -hostfile ./ myhostsfile ./ GPUSPH --device 2,3

To run 6 processes on 3 hosts, each using 2 devices, we will run:

mpirun -np 6 -hostfile ./ myhostsfile_with3hosts \
--num -hosts 3 ./ GPUSPH --device 0,1

(–byslot-scheduling might also be necessary)
To run 12 processes on 12 hosts, each using 1 device, we will run:

mpirun -np 12 -hostfile ./ myhostsfile ./ GPUSPH --device 0

Note that another simulation can be run simultaneously on one of the free devices
of each node (e.g. device number 3), with:

mpirun -np 12 -hostfile ./ myhostsfile ./ GPUSPH --device 3

Please note the options for the MPI library always precede the GPUSPH executable
name. If the MPI library supports it, we also suggest enabling the option to tag
each line of the output with the process rank that has generated it; in OpenMPI, the
option is called --tag-output while in MVAPICH -prepend-rank. This will come
very helpful when the logs need to be analyzed (tip: use grep to separate the logs if
they are multiplexed).
If you need to use any queue-management system, remember to inform it about
the desired topology, coherently with the options passed to GPUSPH. For example,
with PBS you would set the nodes and ppn parameters for the number of hosts and
processes per host, respectively.

17

7 Installing pre/post processing tools

7.1 Installing SALOME
You can download SALOME from:
http://www.salome-platform.org/downloads/current-version
For this you need to register on the SALOME website. Then, follow the installation
instructions from the SALOME website and the installer.
Remark: SALOME is used for SA boundary pre-processing, to generate an STL
mesh of the boundaries. You can of course use another mesher of your choice for this
step.

7.2 Installing CRIXUS
Crixus is a preprocessing tool for GPUSPH.

Prerequisites:

• cmake ≥ 2.8

• cuda

• hdf5 ≥ 1.8.7

Getting CRIXUS:
git clone https :// github.com/Azrael3000/Crixus.git
cd Crixus.git

Compiling Crixus:
Crixus uses CMake for compilation. Let us assume that you have CRIXUS in a
Crixus.git directory. and you want the building to happen in Crixus.git/build
then follow the commands below:
mkdir build
cd build
cmake ..
make

Note that you should not run cmake in the main Crixus folder.
The binary is then located at Crixus.git/build/bin/Release/Crixus. Note that
"make install" is not supported yet. To easily change the parameters of cmake you
can use ccmake instead.

18

http://www.salome-platform.org/downloads/current-version

If hdf5 cannot be found due to lacking environmental variable you can edit the main
CMakeLists.txt which has a commented line that reads:
#set(ENV{HDF5_ROOT} "/your/path/to/hdf5")

Uncomment it and set the respective hdf5 path in order to use your custom instal-
lation.

To finish the installation it is recommended to add the path to the CRIXUS binary
to your $PATH environment variable. Add this line in /.bashrc:
export PATH=/your_path/Crixus.git/build/bin/Release/Crixus:$PATH
where /your_path is your path to the CRIXUS directory.

7.3 Installing PARAVIEW
PARAVIEW is directly available from the Linux packages.

19

Appendices

20

A GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same

21

freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

22

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

23

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

24

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid

25

circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,

26

regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical

27

medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular

28

product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in

29

source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

30

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your

31

license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an

32

organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s "contributor version".

A contributor’s "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

33

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory

34

patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to

35

address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE

36

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

37

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

38

References
A. Crespo, M. Gómez-Gesteira, and R. Dalrymple. Modeling Dam Break
Behavior over a Wet Bed by a SPH Technique. Journal of Waterway,
Port, Coastal, and Ocean Engineering, 134(6):313–320, 2008. ISSN
0733-950X. doi: 10.1061/(ASCE)0733-950X(2008)134:6(313). URL
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-950X%282008%
29134%3A6%28313%29.

R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics -
{T}heory and application to non-spherical stars. Monthly Notices of
the Royal Astronomical Society, 181:375–389, November 1977.

Moncho Gomez-Gesteira and Robert Anthony Dalrymple. Using a
Three-Dimensional Smoothed Particle Hydrodynamics Method for
Wave Impact on a Tall Structure. Journal of Waterway, Port,
Coastal, and Ocean Engineering, 130(2):63–69, 2004. ISSN
0733-950X. doi: 10.1061/(ASCE)0733-950X(2004)130:2(63). URL
http://dx.doi.org/10.1061/(ASCE)0733-950X(2004)130:2(63).

Derek Garard Goring. Tsunamis – The propagation of long waves
onto a shelf. PhD, California Institute of Technology, Pasadena,
California, 1979.

Alexis Hérault, Giuseppe Bilotta, and Robert Anthony Dalrymple. SPH
on GPU with CUDA. Journal of Hydraulic Research, 48(Extra Issue):
74–79, 2010.

Imre M. Jánosi, Dominique Jan, K. Gábor Szabó, and Tamás Tél.
Turbulent drag reduction in dam-break flows. Experiments in
Fluids, 37(2):219–229, August 2004. ISSN 0723-4864, 1432-1114.
doi: 10.1007/s00348-004-0804-4. URL http://link.springer.com/article/
10.1007/s00348-004-0804-4.

L. B. Lucy. A numerical approach to the testing of the fission
hypothesis. The Astronomical Journal, 82:1013–1024, December 1977.
doi: 10.1086/112164.

J. J. Monaghan, P. J. Bicknell, and R. J. Humble. Volcanoes,
Tsunamis and the demise of the Minoans. Physica D: Nonlinear
Phenomena, 77(1–3):217–228, October 1994. ISSN 0167-2789. doi:

39

http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-950X%282008%29134%3A6%28313%29
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-950X%282008%29134%3A6%28313%29
http://dx.doi.org/10.1061/(ASCE)0733-950X(2004)130:2(63)
http://link.springer.com/article/10.1007/s00348-004-0804-4
http://link.springer.com/article/10.1007/s00348-004-0804-4

10.1016/0167-2789(94)90135-X. URL http://www.sciencedirect.com/
science/article/pii/016727899490135X.

Halldór Árnason. Interactions between an incident bore and a
free-standing coastal structure. PhD, UMI Dissertation Services,
University of Washington, 2005.

40

http://www.sciencedirect.com/science/article/pii/016727899490135X
http://www.sciencedirect.com/science/article/pii/016727899490135X

	Introduction
	Installation of GPUSPH
	Installing CUDA
	Installing GPUSPH
	Installing the CHRONO library

	Choosing the GPUSPH [language=sh]Problem and other compilation options
	Example Problems
	DamBreak3D
	DamBreakGate
	OpenChannel
	WaveTank
	SolitaryWave
	Seiche
	TestTopo

	GPUSPH Command Line Options
	Running multi-node simulations
	Installing pre/post processing tools
	Installing SALOME
	Installing CRIXUS
	Installing PARAVIEW

	GNU General Public License

